Novel β-iminoenolato (or β-carbonyliminato) complexes starting from di- μ-hydroxo palladium or platinum complexes with dimethyl acetylenedicarboxylate and primary amines: Crystal structure of [$\left.\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}\left(\mathrm{N}^{\left.\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} \mathrm{p}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC(O}\right) \mathrm{OMe}\right\}\right]}\right.\right.$

José Ruiz ${ }^{\text {a }}$, Venancio Rodríguez ${ }^{\text {a }}$, Gregorio López ${ }^{\text {a,* }}$, Penny A. Chaloner ${ }^{\text {b }}$, Peter B. Hitchcock ${ }^{b}$
${ }^{3}$ Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain
${ }^{6}$ School of Chemistry and Molecular Sciences, University of Sussex, Brighton BNI 9QJ, UK

Received 28 December 1995

Abstract

The reaction of the binuclear hydroxo complexes $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right)_{2}\right](\mathrm{M}=\mathrm{Pd}$ or Pt$)$ with alkyl or arylamines $\left(\mathrm{RNH}_{2}\right)$ in the presence of dimethyl acetylenedicarboxylate (DMAD) yields the novel complexes [NBu_{4} I($\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left[\mathrm{N}(\mathrm{R}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC(O}\right)$ - OMe)] $\left(\mathrm{M}=\mathrm{Pd}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{1}), p-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2}), p-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{3}), p-\mathrm{ClC}_{6} \mathrm{H}_{4}(4), \mathrm{Et}(5), \operatorname{Pr}(6), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}(\mathbf{7}) ; \mathrm{M}=\mathrm{Pt}, \mathrm{R}-p-\mathrm{MeC}_{6} \mathrm{H}_{4}(8)\right.$, $\left.p-\mathrm{MeOC}_{6} \mathrm{H}_{4}(9)\right)$. Similar reactions carried out with $\left.\left[\mathrm{PdR}\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right)_{2}\right]$ yield the complexes $\left[\left(\mathrm{PPh}_{3}\right) \mathrm{RPd}\left(\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}\right.\right.$ (O)OMe)] ($\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{R}^{\prime}=\mathrm{Me}$ (10), Et (11), $\operatorname{Pr}(12), \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (13); $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{Me}(14), \mathrm{Et}(15), \operatorname{Pr}(16), \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (17)), However, the reaction of $\left.\left[\mathrm{Pd}_{6}\left(\mathrm{C}_{6} \mathrm{~F}_{9}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right)_{2}\right]$ with PhNH_{2} and DMAD yields $\left.\left.\left[\mathrm{Pd}_{6} \mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right)_{2}(\mu-\mathrm{OH})(\mu-\mathrm{NHPh})\right]$. The iminoenolate complex $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pd}\left(\mathrm{N}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Mc}\right) \mathrm{CHC}(\mathbf{O}) \mathrm{OMc}\right)\right](18)$ is obtained when the di- μ-hydroxo complex is treated with $\mathrm{HN}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OMc}$. Protonation of complex 1 by $\mathrm{HCl}(\mathrm{aq})$ gives $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{Cl})\right)_{2}\right]$ and dimethyl N -phenylaminofunarate. $\left.\left[\mathrm{NBu}_{4} \|^{(}\left(\mathrm{C}_{6} \mathrm{~F}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{N}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}^{2}\right) \mathrm{CH}{ }_{2} \mathrm{CO}\right) \mathrm{O}\right)\right]$ (19) is obtained when complex 1 is treated with aqueous methanol. Conduetivity measurements and spectroscopic ($1 \mathbb{R},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$) methods have been used to characterize the complexes. The X -ray diffriaction study of $\left.\left[\mathrm{NBu}_{4} \mathrm{H}^{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}\left(\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC(O}\right) \mathrm{OMe}\right)\right]$ (3) has established that the coordination about palladium is upproximately square plamar and that there is substantial delocalization in the iminoenolate ligand.

Keywords: Palladium; X-ray crystal structure; μ-Hydroxo complexes; Dimethylacelylenedicarboxylate; Synthesis

1. Introduction

The 1,4 addition of amines to dimethyl acetylenedicarboxylate (DMAD) gives [1] cis-trans mixtures of the so-called Michael-type addu. is RHNC($\left.\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}$ $\mathrm{CO}_{2} \mathrm{Me}$ which serve as intermediates for the synthesis of a variety of nitrogen-containing heterocyclic systems via oxidation with lead tetraacetate [2].

Insertion reactions under very mild conditions of DMAD with palladium amide complexes result in car-bon-nitrogen bond formation [3]. For example, trans$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(\mathrm{NHPh})\left(\mathrm{PMe}_{3}\right)_{2}\right]$ gives trans- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$.

[^0]$\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{NHPh}\right)$ ($\left.\mathrm{PMe}_{3}\right)_{2}$] where the deprotonated N-phenyl-aminomaleate ligand acts as an anionic monodentate C -donor ligand. The insertion of DMAD into an iridium-OH bond to afford the corresponding enol complex has been reported recently [4] and the ester-derived palladium cnolate $\left[\mathrm{LPd}\left(\mathrm{Ph}_{2}\right.\right.$ $\mathrm{PCH}=\mathrm{C}(\mathrm{O}) \mathrm{OEt}$] also reacts with DMAD to yield the alkenyl complex $\left[\mathrm{LPd}\left\{\mathrm{Ph}_{2} \mathrm{PCH}[\mathrm{C}(\mathrm{O}) \mathrm{OEt}]\left(\mathrm{MeO}_{2^{-}}\right.\right.\right.$ $\left.\mathrm{CC}=\mathrm{CCO}_{2} \mathrm{Me}\right)$)] [5]. Reactions of cyclopalladated complexes with acetylenes are also known, but these reactions proceed by insertion of the acetylene into the metal-carbon bond rather than the metal-nitrogen bond [6,7].

In the course of our investigations into hydroxo complexes of the nickel group elements, we have found
that arylamines (RNH_{2}) react with the binuclear hydroxo complex $\left[\left\{\mathrm{Pd}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right\}_{2}\right]$ to give the amide complexes $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mu-\mathrm{OH})(\mu-\mathrm{NHR})\right]$ [8]. Binuclear amide complexes of the types $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{F}_{5}\right)\left({ }^{\prime} \mathrm{BuNC}\right)(\mu-\mathrm{NHR})\right\}_{2}\right][8]$ and $\left[\left\{\mathrm{Pd}(8-\mathrm{mq})_{2}\left(\mu-\mathrm{O}_{2}-\right.\right.\right.$ CMe) $(\mu-\mathrm{NHR})][9](8-\mathrm{mq}=8$-quinolylmethyl) have also been prepared. We also know [10] that di- μ-amide complexes $\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{NHR})\right\}_{2}\right]^{2-}$ can be prepared by reaction of the the di- μ-hydroxo complexes $\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right)_{2}\right]^{2-} \quad(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ with arylamines. No reaction was, however, observed when it was attempted to react these arylamide-bridged complexes with DMAD in tetrahydrofuran, and the unreacted amide complex was recovered. In contrast, when the di- μ-hydroxo complexes are reacted with alkyl or arylamines in the presence of DMAD, the novel complexes $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left\{\mathrm{N}(\mathrm{R}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O})\right.\right.$. $\mathrm{OMe}]$] $(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ and $\left[\left(\mathrm{PPh}_{3}\right) \mathrm{RP}\right.$ $\left.d\left[\mathrm{~N}\left(\mathrm{R}^{\prime}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OMe}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$ are obtained. This paper deals with the synthesis and structural characterization of these complexes.

2. Experimental details

The C. H, N analyses were performed with a Carlo Erba model EA 1108 microanalyser. Decomposition temperatures were determined with a Mettler TG-50 thermobalance at a heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and the solid samples under nitrogen flow ($100 \mathrm{ml} \mathrm{min}^{-1}$). Molar conductivities were measured in acetone solution ($c=5 \times 10^{-4}$ mol dm^{-3}) with a Crison 525 conduc. timeter. The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AC 200E or Varian Unity 300 spectrometer, using $\mathrm{SiMe}_{4} \mathrm{CFCl}_{3}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$ as standards respectively, Infrared spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrophotometer using Nujol mulls between polyethylene sheets. Solvents were dried by the usual methods. The starting complexes [NBu, $]_{2}$ $\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{3}\right)_{2}(\mu \cdot \mathrm{OH})\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pd}[11], \mathrm{Pt}[12)]$ and $\left[\left(\mathrm{PdR}\left(\mathrm{PPh}_{3}\right)\left(\mu_{-} \mathrm{OH}\right)\right]_{2}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}[13]\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{3}[14]\right)$ were prepared by procedures described elsewhere.

```
2.1. \(\left(\mathrm{NBu}_{4} / /\left(\mathrm{C}_{6} F_{5}\right)_{2} \mathrm{Pd} \overline{(N(R) C(C O, M e) C H C(O)}\right.\).
OME ! ( \(R=\mathrm{C}_{6} \mathrm{H}_{3}\) (1), \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\) (2), \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe-p}\)
(3), \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}\) (4), Et (5), \(\operatorname{Pr}\) (6), \(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\) (7)
```

To a solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu \cdot \mathrm{OH})\right\}_{2}\right]$ (100 $\mathrm{mg}, 0.071 \mathrm{mmol}$) in tetrahydrofuran (5 mI) was added the corresponding amine $\mathrm{RNH}_{2}(0.142 \mathrm{mmol})$ and DMAD (0.142 mmol), The resulting solution was stirred at room temperature for 4 h and the solvent was evaporated under vacuum. The residue was extracted with isopropanol-hexane and the white solid was collected by filtration, washed with hexane and air-dried. Complexes $1-7$ were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane.

2.2. [$\left.\mathrm{NB} u_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \stackrel{\left.\mathrm{Pt}\left\{\mathrm{N}(\mathrm{R}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OMe}\right\}\right]}{ }\right.$ ($R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}$ (8), $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}$ (9))

To a solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right\}_{2}\right](100$ $\mathrm{mg}, 0.063 \mathrm{mmol}$) in toluene (8 ml) was added the corresponding amine (0.378 mmol) and DMAD (0.378 mmol). After the solution was boiled under reflux for 8 h, the solvent was removed under vacuum and the white residue was extracted with isopropanol-hexane, then separated by filtration, washed with hexane and airdried. Purification was achieved by recrystallization from dichloromethane-hexane.

2.3. [($\left.\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pd}\left[\mathrm{N}(\mathrm{R}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OMe}^{3}\right]$ ($\mathrm{R}=\mathrm{Me}$ (10), Et (11), $\left.\mathrm{Pr}(12), \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}(13)\right)$

To a solution of $\left[\left(\mathrm{Pd}^{\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right\}_{2}\right](90 \mathrm{mg} \text {, }}\right.\right.$ 0.0814 mmol) in tetrahydrofuran (6 ml) was added the corresponding amine (0.1628 mmol) and DMAD (0.1628 mmol). The resulting solution was stirred at room temperature for 4 h and the solvent was removed under vacuum. The residue was treated with hexane, with constant stirring, and then the solvent was removed under vacuum. Finally, the residue was treated with methanol to give a pale yellow precipitate, which was collected by filtration and air-dried.

2.4. [(PPh $\left.)\left(\mathrm{C}_{0} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{N}(\mathrm{R}) \mathrm{C}\left(\mathrm{CO} \mathrm{O}_{2} \mathrm{Me}\right) \mathrm{CHC(O}\right) \mathrm{OMe}\right\} \mid$

To a solution of $\left[\left\{\mathrm{Pd}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right)_{2}\right]$ (90 $\mathrm{mg}, 0.0974 \mathrm{mmol}$) in tetrahydrofuran (6 ml) was added the corresponding amine (0.1948 mmol) and DMAD (0.1948 mmol). The resulting solution was stirred at room temperature for 4 h and then taken to dryness under vacuum. The residue was stirred under hexane for a few minutes and the solvent was then removed under vacuum. The residue was treated with isopropanol and a white solid was separated by filtration and air-dried.

2.5. Reaction of $\mid\left\{\mathrm{Pd}^{2}\left(C_{0} F_{s}\right)\left(P P_{3}\right)(\mu-O H)\right\}_{2} /$ with aniline and DMAD

To a solution of the hydroxo complex (100 mg . 0.0905 mmol) in tetrahydrofuran (8 ml) was added $\mathrm{PhNH}_{2}(0.1810 \mathrm{mmol})$ and DMAD (0.1810 mmol) and the resulting solution was boiled under reflux for 7 h . The solvent was then eliminated under reduced pressure and methanol was added to the residue. A yellow precipitate was recovered by filtration and air-dried (yield 75\%). The analytical and NMR (${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$) data identified the solid as the previously reported [8] μ-hydroxo- μ-amide complex trans- $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2^{-}}\right.$ $(\mu-\mathrm{OH})(\mu-\mathrm{NHPh})]$.

2.6. [($\left.\left.\left.\left.\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \stackrel{\mathrm{Pd}\left\{\mathrm{N}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O})\right.}{ }\right) \mathrm{OMe}\right\}\right]$

(18)

To a solution of dimethyl N-phenylamino fumarate $\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{C}(\mathrm{NHPh}) \mathrm{CO}_{2} \mathrm{Me}$ (prepared by addition of DMAD (0.181 mmol) to a solution of aniline (0.181 mmol) in diethyl ether (10 ml) with constant stirring for 14 h , and elimination of the solvent under reduced pressure) in methanol (6 ml) was added $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ -$\left.\left.\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right)_{2}\right](100 \mathrm{mg}, 0.0905 \mathrm{mmol})$. The solution was stirred at room temperature for 1 h during which time a yellow precipitate formed which was collected by filtration and air-dried.

$$
\begin{aligned}
& \text { 2.7. Reaction of }\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right\}_{2}\right]^{2-} \text { with } \\
& \mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{C}\left(\mathrm{NHPh}^{2} \mathrm{CO}_{2} \mathrm{Me}\right.
\end{aligned}
$$

A solution of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\left(\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right\}_{2}\right](100$ $\mathrm{mg} ; 0.0714 \mathrm{mmol})$ and $\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{C}(\mathrm{NHPh}) \mathrm{CO}_{2} \mathrm{Me}$ (0.1428 mmol ; prepared as described above) in tetrahydrofuran (8 ml) was stirred at room temperature for 4 h . After evaporation of the solvent under reduced pressure, the residue was treated with isopropanol and a white solid was collected by filtration and air-dried (yield 78%). This solid was identified as complex 1 by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ spectroscopy.

2.8. Reaction of complex 1 with HCl(aq)

To a solution of $1(400 \mathrm{mg}, 0.437 \mathrm{mmol})$ in acetone (15 ml) was added $\mathrm{HCl}(\mathrm{aq})(0.437 \mathrm{mmol})$. After stirring the solution at room temperature for 30 min , the solvent was removed under vacuum and the residue was treated with diethyl ether. A white solid, identified as the known [15] di- μ-chloride palladium complex [NBu_{4}] ${ }_{2}$ $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{Cl})\right)_{2}\right]$, was filtered off, and acetone-dichloromethane was then added to the filtrate which was passed through a small column filled with florisil. On evaporation of the volatiles under vacuum, an oily residue resulted which was characterized [1] by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR as dimethyl N-aminofumarate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHC}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHCO}_{2} \mathrm{Me}$ (' H NMR, in CDCl_{3} $\delta(\mathrm{ppm})$ at $9.59(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 7.21,7.03$ and $7.05(5$

Scheme 1.

Table 1
Crystal structure determination details

Crystal duta	
Formula	$\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Pd}$
Fw	947.3
Crystal system	orthorhombic
Space group	Pbca (No.61)
Cell dimensions	
$a(\mathrm{~A})$	15.648(6)
$b(\AA)$	20.099(3)
$c(\AA)$	28.019(7)
α (deg)	90
β (deg)	90
γ (deg)	90
Cell volume (\AA^{3})	8812
Z	8
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.43
$F(000)$	3888
Monochromated Mo K α radiation	
$\lambda(\mathrm{A})$	0.71069
$\mu\left(\mathrm{cm}^{-1}\right)$	5.0
Temperature (K)	293
Data collection	
Crystal size (mm^{3})	$0.3 \times 0.25 \times 0.2$
Diffractometer	Enraf-Nonius CAD4
No. of reflections for calculating cell; $\theta_{\text {min }}, \theta_{\text {max }}$, (deg)	
Scan mode for data collection	0-2 θ
Data reflection ranges: $\theta \mathrm{min}$ and max (deg)	$\begin{aligned} & h 0 \rightarrow 18, k 0 \rightarrow 23 \\ & 0 \rightarrow 23, l 0 \rightarrow 33 ; 2 \rightarrow 25 \end{aligned}$
Total unique reflections measured	8467
No. of significant reflections, $\left\|F^{2}\right\|>2 \sigma\left(F^{2}\right)^{a}$	4118
Max change in standard reflections (\%)	-0.2
Decny correction	no
Empirical absorption correction, $T_{\max }, T_{\min }$	0.999, 0.954
Structure solution and refinement	
Non-H atoms located by	heavy atom methods suilixs-6\%
Refinement by	full matrix least squares non-H atoms anisotropic
Hydrogen atoms	fixed calculated positions $U_{\text {iso }}=1.3 U_{\text {eq }}$ for parent atom
R	0.056
R^{\prime}	0.055
S	1.2
No. of variables	532
No. of reflections used in the refinement	4118
$\operatorname{Max}(\Delta / \sigma)$	0.02
$\operatorname{Max}, \min (\Delta / \rho)\left(\mathrm{c}^{\circ}{ }^{-3}\right)$	+0.43, -0.16
$\begin{aligned} & \bar{\sigma}\left(F^{2}\right)=\left(\sigma^{2}(I)+(0.04 I)^{2}\right\}^{1 / 2} / L p, \quad w=\sigma^{2}(F) \\ & \sum w\left(\left\|F_{0}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} \text { minimized. } \end{aligned}$	

$\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$), $5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.67$ and 3.62 ($\mathrm{ss}, 6 \mathrm{H}$. $\mathrm{MeO}) ;{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta(\mathrm{ppm}) \quad 169.9$ and 164.9 ($\mathrm{CO}_{2} \mathrm{Me}$), 148.0 and 140.2 ($\mathrm{C}-\mathrm{NHPh}$ and $\mathrm{C}_{\text {ipso }}$ of Ph), 129.1, 124.2 and $120.6(\mathrm{CH}$ of Ph$), 93.5(=\mathrm{CH}), 52.8$ and $51.2(\mathrm{MeO})$).

2.9. Reaction of complex I with methanol

A suspension of complex $1(100 \mathrm{mg} ; 0.109 \mathrm{mmol})$ in methanol (10 ml) was stirred at room temperature for 7 h to give a clear solution. After complete evaporation of the solvent under reduced pressure, the residue was treated with isopropanol and the solid was collected by filtration and air-dried. This white solid was identified as [$\left.\mathrm{NBu}_{4} I\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}\left(\mathrm{N}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{O}\right\}\right]$ (19).

2.10. X-ray structure determination

A crystal of 3 suitable for a diffraction study was grown from dichloromethane-hexane. Details of data collection and refinement are given in Table 1. Additional material available from the authors or the Cambridge Crystallographic Data Centre comprises tables of intramolecular distances and angles, hydrogen atom coordinates, anisotropic temperature factors, and least squares planes for 3 (10 pages).

3. Results and discussion

The preparations of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})_{2}\right\}_{2}\right]$ ($\mathrm{M}=\mathrm{Pd}[11]$ or $\mathrm{Pt}[12])$ and their reactions with weak protic acids were previously reported. Both hydroxo complexes react with primary amines RNH_{3} (two equivalents for Pd or an excess for Pt) in the presence of DMAD (two equivalents for Pd or an excess for Pt) in tetrahydrofuran either at room temperature (Pd) or boiling under reflux (Pt) to give the complexes
[$\mathrm{NBu}_{4} \mathrm{II}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \overline{\left.\mathrm{M}\left(\mathrm{N}(\mathrm{R}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OMe}\right\}\right]} \mathbf{1 - 9}$ shown in Scheme 1.

The analytical data (Table 2) for complexes 1-9 were consistent with the proposed formulae, and in acetone solution they behave as $1: 1$ electrolytes [16]. The IR spectra of these bis(pentafluorphenyl) derivatives show the characteristic absorptions of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group [17] at 1630, 1490, 1450, 1050, 950 and a split band at ca. $800 \mathrm{~cm}^{-1}$. This latter is derived from the so-called X -sensitive mode in $\mathrm{C}_{6} \mathrm{~F}_{5}$-halogen molecules, which is characteristic of the cis- $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ fragment [18] and behaves like a $\nu(\mathrm{M}-\mathrm{C})$ band [19]. A strong absorption observed at ca. $1730 \mathrm{~cm}^{-1}$ is assigned to the uncoordinated $\mathrm{CO}_{2} \mathrm{Me}$ group and two bands at ca. 1590 and $1515 \mathrm{~cm}^{-1}$ are the combination bands $v(C C)+$ $v(\mathrm{CO})$ and $v(\mathrm{CO})+v(\mathrm{CC})$ respectively.

The 'H NMR spectra of these complexes (Table 3) show the presence of a singlet at ca. 4.2 ppm assigned to the CH proton and two singlets at ca. 3.4 and 3.2 ppm for the methoxy protons. The observation of three or two signals for the aromatic protons of the arylamide groups indicates that rotation of the aryl group about the $\mathrm{C}-\mathrm{N}$ bond is rapid on the NMR time scale. The ${ }^{19} \mathrm{~F}$ NMR spectra indicate the presence of two different types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group freely rotating about the carbonmetal bond; each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group gives the three expected signals (relative intensities of $2: 1: 2$) for the ortho-, para- and meta-fluorine atoms respectively, although overlapping of some signals is observed in some instances. The ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of 3 in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ show: the two carboxyl peaks at 169.5 and 167.8 ppm , a peak for the CH group at 75.6, and three peaks for the methoxy carbons at $55.4,51.1$ and 50.9 ppm . The

Table 2
Analytical data, yields and physical properties for complexes $1-9$

Complex	Yield (\%)	$\begin{aligned} & \mathrm{M}, \mathrm{p}^{\circ} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Analysis (\%) ${ }^{\text {B }}$			Selected IR bands ${ }^{\text {c }}$			$\Lambda_{M}{ }^{\text {d }}$
			C	H	N	$v(C=0)$	$\begin{aligned} & v(\mathrm{CC})+v(\mathrm{CO}) \\ & v(\mathrm{CO})+v(\mathrm{CC}) \end{aligned}$	$\nu\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$	
1	68	230	$\begin{aligned} & 52.1 \\ & (52.4) \end{aligned}$	$\begin{aligned} & \hline 5.2 \\ & (5.3) \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & (3.1) \end{aligned}$	1730	1600, 1520	790. 780	100
2	71	227	$\begin{aligned} & 52.7 \\ & (52.9) \end{aligned}$	$\begin{aligned} & 5.7 \\ & (5.4) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (3.1) \end{aligned}$	1730	1595. 1520	795, 780	99
3	73	230	$\begin{aligned} & 51.8 \\ & (52.0) \end{aligned}$	$\begin{aligned} & 5.5 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (3.0) \end{aligned}$	1730	1595. 1520	795. 780	95
4	75	227	$\begin{aligned} & 50.2 \\ & (50.5) \end{aligned}$	$\begin{aligned} & 5.1 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (2.9) \end{aligned}$	1730	1600. 1520	795. 780	99
5	73	220	$\begin{aligned} & 49.5 \\ & (49.8) \end{aligned}$	$\begin{aligned} & 5.6 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (3.2) \end{aligned}$	1745	1590. 1535	790, 780	101
6	71	231	$\begin{aligned} & 49.8 \\ & (50.3) \end{aligned}$	$\begin{aligned} & 5.9 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (3.2) \end{aligned}$	1720	1590, 1525	795. 780	99
7	75	183	$\begin{aligned} & 52.5 \\ & (52.9) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (5.4) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (3.0) \end{aligned}$	1730	1595,1515	795, 780	102
8	73	231	$\begin{aligned} & 47.9 \\ & (48.3) \end{aligned}$	$\begin{aligned} & 4.8 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 2.7 \\ & (2.8) \end{aligned}$	1730	1590.1525	810,795	97
9	74	232	$\begin{aligned} & 47.5 \\ & (\$ 7.5) \end{aligned}$	$\begin{aligned} & 5.0 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (2.7) \end{aligned}$	1730	1590.1525	810,795	100

[^1]Table 3
NMR spectroscopic data ${ }^{\text {a.b }}$ (J in Hz) for complexes 1-9

Complex	${ }^{1} \mathrm{H}^{\mathbf{c}}$	${ }^{19} \mathrm{~F}$
1	$\begin{aligned} & 6.45\left(\mathrm{dd}, 2 \mathrm{H}_{\mathrm{m}},\right. \\ & \left.J_{\mathrm{om}}=J_{\mathrm{mp}} 7.4\right) \end{aligned}$	-114.4(d, $2 \mathrm{~F}_{\mathrm{o}}, \mathrm{J}_{\text {om }}$ 29.4)
	$6.22\left(t, 1 H_{p}, J_{\text {mp }} 7.4\right)$	-115.2(d, $2 \mathrm{~F}_{0}, J_{\text {om }} 30.5$)
	6.62 (d, $\left.2 \mathrm{H}_{0}, J_{\mathrm{om}} 7.4\right)$	-165.4(t, $1 \mathrm{~F}_{\mathrm{p}}, J_{\text {mp }}$ 19.8)
	4.29 (s, 1 H, CH)	- 166.6 (m, $2 \mathrm{~F}_{\mathrm{m}}+1 \mathrm{~F}_{\mathrm{p}}$)
	3.42 (s, $3 \mathrm{H}$,CO 2 Me)	-167.2 (m, $2 \mathrm{~F}_{\mathrm{m}}$)
	3.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	
2	6.87(d, $2 \mathrm{H}, \mathrm{J}_{\text {om }} 7.8$)	-114.3 (d, $2 \mathrm{~F}_{0}, J_{\text {om }}$ 29.1)
	$6.46\left(\mathrm{~d}, 2 \mathrm{H}_{\mathrm{m}}, J_{\mathrm{om}} 7.8\right)$	$-115.1\left(\mathrm{~d}, 2 \mathrm{~F}_{0}, J_{\mathrm{om}} 29.6\right)$
	4.26 (s, 1 H. CH)	-165.4 (t, $1 \mathrm{~F}_{\mathrm{o}}, J_{\text {mp }} 19.8$)
	3.41 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	- $166.7\left(\mathrm{~m}, 2 F_{\mathrm{m}}\right.$)
	$3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$	-167.1 ($\left.\mathrm{t}, 1 \mathrm{~F}_{0}, J_{\mathrm{mp}} 19.2\right)$
	$2.07 \text { (s, 3H, p-Me) }$	$-167.5\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right)$
3	6.52 (d, $2 \mathrm{H}_{0}, J_{\text {om }} 8.0$)	-114.3 (d, $2 \mathrm{~F}_{\mathrm{o}}, \mathrm{J}_{\text {om }}$ 29.9)
	6.38 (d, $2 \mathrm{H}_{\mathrm{m}}, J_{\text {om }} 8.0$)	- 115.1 (d, $2 \mathrm{~F}_{\mathrm{o}}, \mathrm{J}_{\text {om }}$ 29.9)
	4.25 (s, 1 H, CH)	-165.3 (t, $1 \mathrm{~F}_{0}, J_{\text {mp }}$ 19.8)
	3.68 (s, $3 \mathrm{H}, p-\mathrm{MeO}$)	-166.7 (m, $2 \mathrm{~F}_{\mathrm{m}}+1 \mathrm{~F}_{\mathrm{p}}$)
	3.40 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	-167.1 (m, $2 \mathrm{~F}_{\mathrm{m}}$)
	3.25 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	
4	6.83 (d, $2 \mathrm{H}_{0}, J_{\text {om }} 8.6$)	-114.4 (d, $2 \mathrm{~F}_{\mathrm{o}}, \mathrm{J}_{\text {om }}$ 29.4)
	6.59 (d, $2 \mathrm{H}_{\mathrm{m}}, J_{\text {om }} 8.6$)	-115.4 (d, $2 \mathrm{~F}_{\mathrm{o}}, J_{\text {om }}$ 29.4)
	4.33(s, 1 H, CH)	-165.1 (t, $1 \mathrm{~F}_{\mathrm{p}}, J_{\text {mp }}$ 19.8)
	3.42 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	-166.1 (t, $1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}}{ }^{\text {19.8 }}$)
	3.28 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	-167.0(m, 4 F_{m})
5	3.97 (s, 1 H, CH)	-113.1 (d, $2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 29.4$)
	3.71 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	
	3.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Mc}$)	-165.1 (t, $1 F_{\mathrm{p}}, J_{\text {mp }}$ 19.8)
	$2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$	$-165.5\left(t, 1 F_{0}, J_{m p} 19.8\right)$
	0.82 (1, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$,	-166.3 (m, 2 F $\mathrm{FII}^{\text {) }}$
	J6.9)	-166.7 (m, $2 \mathrm{~F}_{\mathrm{m}}$)
6	3.97 (s. 1 H. CH)	- 113.2(d, $\left.2 \mathrm{~F}_{0}, J_{\text {oin }} 29.4\right)$
	3.69 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	- 115.7 (d, $2 F_{0}, J_{\text {onn }} 29.9$)
	3.31 (s. $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Mc}$)	- 165.3 (t. $1 f_{p}, J_{\text {mip }}$ 19.5)
	2.66 (m, $2 \mathrm{H}, \mathrm{NCH}_{2}$)	-165.4 (t, 1 $\left.p_{p}, J_{\text {mp }} 19.5\right)$
	1.42 (m,2 $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$)	$=166.4\left(\mathrm{~m}, 2 F_{\mathrm{m}}\right)$
	$\underset{J 6.9)}{0.35\left(\mathrm{t}, 3 \mathrm{H}_{1} \mathrm{CH}_{2} \mathrm{CH}_{3},\right.}$	- 166.7 (m, 2 F $\mathrm{min}^{\text {) }}$
7	7.09(dd, $2 \mathrm{H}_{\mathrm{m}}$,	- 113.6(d, $2 \mathrm{~F}_{0}, J_{\text {omm }}$ 29.4)
	$\left.J_{\text {on }}=J_{\text {mp }} 7.4\right)$	
	$7.04\left(t, I^{1} H_{p}, J_{\mathrm{mp}} 7.4\right)$	- 115.2 (d, $2 \mathrm{~F}_{0}, J_{\text {oin }} 30.2$)
	6.89 (d, $2 \mathrm{H}_{0}, J_{\mathrm{om}}$ 7.4)	- 165.4 (t, $1 F_{\mathrm{p}}, J_{\text {mp }}$ 19.5)
	4.18 (s, $2 \mathrm{H}, \mathrm{NCH}_{2}$)	-165.9 (t, $\left.1 \mathrm{~F}_{p}, J_{\text {mp }} 19.8\right)$
	4.11 (s, 1 H, CH)	-166.9 (m, $4 \mathrm{~F}_{\mathrm{m}}$)
	3.21 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	
	3.42 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	
8	$6.64\left(\mathrm{~d}, 2 \mathrm{H}_{0}, \mathrm{Jom}_{\text {om }} 7.8\right)$	$\begin{aligned} & -117.7\left(\mathrm{~d}, 2 \mathrm{~F}_{0}, J_{\mathrm{on} \mathrm{\prime}} 26.2,\right. \\ & \left.J_{\text {PhF, }} 536.2\right) \end{aligned}$
	6.53 (d. $\left.2 \mathrm{H}_{\mathrm{nl}}, \mathrm{J}_{\mathrm{om}} 7.8\right)$	$\begin{aligned} & -119.1\left(\mathrm{~d}, 2 \mathrm{~F}_{0}, J_{\mathrm{om}} 26.5 .\right. \\ & \left.J_{\text {PhF }} 445.9\right) \end{aligned}$
	4.36 (s. $1 \mathrm{H}, \mathrm{CH}$)	$-1007.0\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\text {mp }}\right.$ 19.2)
	3.46 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	- $167.9\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right.$)
	3.25 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$)	-169.1 $\left(\mathrm{m}, \mathrm{I} \mathrm{F}_{\mathrm{p}}+2 \mathrm{~F}_{\mathrm{m}}\right)$
	2.10 (s, $3 \mathrm{H}, p$-Me)	

Table 3 (continued)

Com- plex	${ }^{1} \mathrm{H}^{\mathrm{c}}$	${ }^{19} \mathrm{~F}$
9	$6.57\left(\mathrm{~d}, 2 \mathrm{H}_{\mathrm{o}}, J_{\mathrm{om}} 8.7\right)$	$-117.7\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 28.2\right.$,
		$\left.J_{\mathrm{PtF}} 536.2\right)$
	$6.41\left(\mathrm{~d}, 2 \mathrm{H}_{\mathrm{m}}, J_{\mathrm{om}} 8.7\right)$	$-119.0\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 29.9\right.$,
		$\left.J_{\mathrm{PtF}_{\mathrm{o}}} 443.1\right)$
	$4.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$	$-167.1\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}} 19.8\right)$
	$3.60(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{MeO})$	$-168.0\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right)$
	$3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$	$-168.8\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}+1 \mathrm{~F}_{\mathrm{p}}\right)$
	$3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$	

$\overline{\left.{ }^{3} \text { Chemical shifts in ppm from TMS (}{ }^{1} \mathrm{H}\right) \text { or from } \mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}\right) .}$ Abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet. ${ }^{\mathrm{b}}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} .^{\mathrm{c}}$ Additional peaks of $\left[\mathrm{NBu}_{4}\right]^{+}$are found at ca. $3.43(\mathrm{t}$, $\left.\mathrm{NCH}_{2}\right), 1.80\left(\mathrm{~m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $0.95(\mathrm{t}$, CH_{3}), the relative intensities being 8:8:8:12 respectively.
attempted ${ }^{15} \mathrm{~N}$ NMR spectrum of 3 by the INEPT technique confirmed that there is no proton on the nitrogen atom. We have recently demonstrated that in the reaction of amines with the hydroxo complexes $\left[\left(\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right)_{2}\right]^{2-}(\mathrm{M}=\mathrm{Ni}$ [20], $\mathrm{Pd}, \mathrm{Pt}[21])$ in the presence of carbon disulphide, $\mathrm{C}-\mathrm{N}$ bonds are formed to give N, N-dialkyldithiocarbamate complexes. In these reactions, and also in that of the DMAD, the nucleophilic attack of the RNH - ion, generated in situ by deprotonation of the amine by the hydroxo complex, on the unsaturated organic system gives the anionic ligand to be bonded to the metal centre. The alternative route of the direct addition of the amine to DMAD and deprotonation of the RNH group of the resulting dimethyl N-arylaminofumarate is also possible [22].

The structure of $\mathbf{3}$ in the solid state has been determined by a single-crystal X-ray diffraction study. Fractional atomic coordinates and selected bond distances and bond angles are presented in Tables 4 and 5 respectively and the molecular structure of the anion of complex 3 is shown in Fig. 1. Coordination at palladium is approximately square planar, with slight buckling. The six-membered chelate ring is close to planar and careful examination of the bond lengths reveals substantial delocalization. Relatively few $\mathrm{N}-\mathrm{O}$ chelates of palladium of this type are available for comparison, and these structures are all complicated by the fact that the ligands are in fact tetradentate with additional amino coordinating groups. The bond lengths in the chelate ring vary, with examples in which the $\mathrm{C}-\mathrm{C}$ bonds of the chelate are similar in length [23-25] lying between a double and a single bond, as obtained here. However, in $[\mathrm{Pd}($ baden $)] N C S$ (baden $=1$-phenyl-3-\{2-[(2-aminoeth-yl)aminolethylimino\}-1-buten-1-olato-O, $N, N^{\prime}, N^{\prime \prime}$) more double bond localization occurs [24]. The $\mathrm{Pd}-\mathrm{N}$ and $\mathrm{Pd}-\mathrm{O}$ bonds are somewhat longer in 3 than in the related examples, which may be attributed to the steric demands of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligands. Both the uncoordinated ester group and the 4 -methoxyphenyl group are twisted

Table 4
Fractional atomic coordinates and equivalent isotropic thermal parameters

	x	y	z	$U_{\text {eq }}$
Pd	0.22979(3)	0.08451(3)	0.12703(2)	0.041(1)
Fl	$0.1985(3)$	-0.0421(2)	$0.1911(1)$	0.067(3)
F2	0.0686(3)	-0.1266(2)	0.1959 (2)	0.087(3)
F3	-0.0750(3)	-0.1055(2)	$0.1444(2)$	$0.104(4)$
F4	-0.0853(3)	0.0026 (3)	0.0862(2)	0.109(4)
F5	0.0452(3)	0.0873(2)	0.0800(2)	0.087(3)
F6	$0.1906(3)$	$0.0939(2)$	0.2392(1)	$0.074(3)$
F7	$0.1207(3)$	$0.1892(3)$	0.2918 (1)	$0.094(3)$
F8	$0.0653(3)$	$0.3030(2)$	$0.2507(2)$	$0.094(3)$
$F 9$	$0.0757(3)$	$0.3174(2)$	$0.1544(2)$	0.097(3)
F10	0.1423 (3)	0.2218(2)	0.1009 (1)	0.080(3)
OI	0.3990(3)	-0.0252(3)	-0.0077(2)	$0.062(3)$
02	0.4383(3)	-0.0788(2)	0.0586(2)	$0.053(3)$
03	0.4715(3)	$0.1735(2)$	$0.1083(2)$	$0.060(3)$
04	$0.1088(4)$	-0.2073(3)	$0.0201(2)$	$0.106(5)$
O5	$0.3363(3)$	$0.1472(2)$	$0.1235(2)$	0.051(3)
N	0.2897(3)	0.0156(2)	0.0833(2)	0.041(3)
N2	$0.6495(3)$	-0.0517(3)	$0.1478(2)$	$0.045(3)$
Cl	$0.3685(4)$	0.0227 (3)	0.0683(2)	$0.040(4)$
C2	$0.4243(4)$	0.0741(3)	0.0785(2)	$0.042(4)$
C3	$0.4046(4)$	$0.1315(3)$	$0.1044(2)$	$0.042(4)$
C4	0.4581(5)	0.2334(4)	$0.1342(3)$	0.076 (6)
C5	0.4031(4)	-0.0290(3)	0.0346(2)	0.047(4)
C6	0.4587(5)	-0.1375(4)	$0.0315(3)$	$0.071(5)$
C7	0.2440 (4)	-0.0414(3)	$0.0666(2)$	0.042 (4)
C8	$0.1846(5)$	-0.0354(3)	$0.0306(3)$	0.057(5)
C9	$0.1375(5)$	-0.0890(4)	$0.0144(3)$	$0.068(5)$
C10	$0.1512(5)$	$=0.1512(4)$	$0.0338(3)$	$0.065(5)$
Cll	0.2108(5)	-0.1581(3)	$0.0697(3)$	$0.066(5)$
$\mathrm{Cl2}$	$0.2566(5)$	-0.1036(3)	$0.0864(3)$	$0.055(5)$
C13	$0.0389(8)$	-0,2001(5)	$=0.0085(6)$	$0.344(12)$
C14	$0.1276(4)$	$0.0268(3)$	$0.1358(2)$	0,040(4)
C15	$0.1289(4)$	$=0.0277(4)$	0.1648(2)	0.047(4)
Cl6	0,0634(5)	$=0.0729(4)$	$0.1670(3)$	$0.059(5)$
C19	$=0.008(5)$	$=0.0630 \times 4)$	$0.1414(3)$	0,039(5)
C18	-0.0136(5)	-0,0089(4)	$0.1132(3)$	$0.063(5)$
C19	$0.0538(5)$	0.0353 (4)	$0.1101(3)$	$0.056(5)$
C20	0.1710(4)	$0.1530(3)$	$0.1675(3)$	0.041 (4)
C21	$0.1618(4)$	0.1484 (3)	$0.2160(2)$	0.047(4)
C 22	$0.1268(5)$	0.1971 (4)	0.2442(3)	$0.060(5)$
C23	0.0976(5)	0.2543(4)	0.2233(3)	0.061(5)
C24	$0.1048(5)$	0.2606(4)	$0.1755(3)$	$0.060(5)$
C25	$0.1394(5)$	$0.2108(4)$	$0.1486(2)$	0.052(4)
C26	$0.6847(5)$	-0.0995(4)	$0.1844(2)$	0.056(5)
C 27	$0.6400(5)$	$=0.1649(4)$	$0.1891(3)$	0.068(5)
C28	$0.6861(6)$	$-0.2105(4)$	0.2224(3)	$0.091(6)$
C29	$0.6430(7)$	-0.2753(5)	$0.2313(44)$	$0.119(8)$
C30	$0.7048(4)$	$0.0100(4)$	$0.1495(3)$	0.056(5)
C31	0.6821 (6)	$0.0653(4)$	$0.1159(3)$	$0.073(6)$
C32	0.7452(6)	$0.1218(4)$	$0.1201(3)$	$0.089(6)$
C33	$0.7229(7)$	$0.1811(5)$	$0.0902(4)$	$0.124(8)$
C34	$0.5570(5)$	-0.0349(4)	$0.1584(2)$	0.052(4)
C35	$0.5389(5)$	$=0.0012(4)$	$0.2057(3)$	0.07616)
C36	0.4425(6)	$0.0081(5)$	$0.2110(3)$	$0.108(7)$
C37	0.4157(9)	0.0402(7)	0.2515(5)	$0.201(12)$
C38	0.6494 (4)	$=0.0827(4)$	0.0975(2)	$0.051(4)$
C39	$0.7337(5)$	-0.1062(4)	0.0789(3)	$0.064(5)$
C40	$0.7224(6)$	-0.1391(4)	$0.0312(3)$	0.072(5)
C41	$0.80 \cdot 44$ (7)	-0.1641(5)	$0.0098(3)$	$0.109(7)$

$U_{\text {eq }}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 5
Selected intramolecular distances (\AA) and angles (deg) for 3, with estimated standard deviations in parentheses

Bonds			
Pd-05	2.091(4)	Pd-C20	2.007(6)
Pd-C14	1.991(6)	O2-C5	$1.326(8)$
Ol-C5	$1.189(8)$	O3-C3	$1.350(8)$
O2-C6	1.438(9)	05-C3	1.237(8)
O3-C4	1.421(9)	C2-C3	$1.396(9)$
$\mathrm{Cl}-\mathrm{C} 2$	1.382(9)	Cl-C5	1.505(9)
Pd-Nl	2.074(5)	N1-Cl	1.310(8)
Angles			
O5-Pd-NI	90.8(2)	O5-Pd-Cl4	175.5(2)
O5-Pd-C20	88.8(2)	NI-Pd-C14	92.7(2)
N1-Pd-C20	178.1(2)	C14-Pd-C20	87.8(3)
$\mathrm{Pd}-\mathrm{O5}-\mathrm{C} 3$	123.8(4)	$\mathrm{Pd}-\mathrm{Nl}-\mathrm{Cl}$	122.7(4)
O5-C3-C2	128.8(6)	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	125.8(6)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	127.7(6)		

out of the plane of the chelate ring, to alleviate crowding.

There are a number of examples of cis- $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ units in complexes of which the structures have been determined. The $\mathrm{Pd}-\mathrm{Cl} 4$ bond (1.991(6) \AA) is quite similar to that trans to oxygen in $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.\right.$ (acac) $\left.\}_{2} \mu \mathrm{Ag}\right][26](1.985(6)$ and $1.990(6) \AA$). The $\mathrm{Pd}-$ C20 bond (2.007(6) \AA) is comparable with that in cis $-\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\right.$ pyrazole $)($ pyrazolate $\left.)\right]$ [18] (2.007(5) A). These values are in accord with the expected trans-influence of the N / O ligand but, given the standard deviations observed, it may be unwise to attach too much significance to them. The CPdC angle ($87.8(3)^{\ominus}$) is at the low end of the range typical for ($\left.\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right)$ units, perhaps because of the steric effeet of the N -aryl group.

The neutral di- μ-hydroxo complexes $\left[\left\{\mathrm{PdR}^{\left(\mathrm{PP}_{3}\right)}\right)(\mu\right.$ $\left.\mathrm{OH}) \boldsymbol{h}_{2}\right]\left(\mathrm{R}-\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$ also react with primary alkyl amines $\mathrm{R}^{\prime} \mathrm{NH}_{2}$ (two equivalents) in the presence of DMAD (two equivalents) in tetrahydrofuran, at room

Fig. 1. Molecular structure of the anion of complex 3. The orter diagram shows the noa-H atoms as 20% thermal vibration ellipsoids.
temperature, to give the corresponding β-iminoenolate complexes 10-17 (Scheme 2). These complexes behave as non-electrolytes in acetone solution. The \mathbb{R} spectra show the presence of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and only a single band for the ' X -sensitive mode' of $\mathrm{C}_{6} \mathrm{~F}_{5}$ (Table 6).

The ${ }^{1} \mathrm{H}$ NMR spectra of these neutral complexes (Table 7) show three singlets at ca. 4.2 (CH), 3.7 and 2.6 (methoxy protons). The doublet signals observed for the NMe protons of complexes 10 and 14 and the $\mathrm{NCH}_{2} \mathrm{Ph}$ protons of 13 and 17 are caused by coupling to the P atom of the phosphine ligand, and, for the same reason, the $\mathrm{NCH}_{2} \mathrm{Me}$ (for 11 and 15) and $\mathrm{NCH}_{2} \mathrm{Et}$ (for 12 and 16) resonances are observed as multiplet signals. All this suggests that the phosphine ligand is trans to the N atom of the β-iminoenolate ligand, as shown in Scheme 2. As expected, three signals with relative intensities of $2: 1: 2$ are found in the ${ }^{19} \mathrm{~F}$ NMR spectra of complexes 10-13 and one singlet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra.

It is worth mentioning that the neutral β-iminoenolate complexes 10-17 are all derived from alkyl amines. The reaction of trans $-\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right\}_{2}\right]$ with the arylamine aniline and DMAD gives the previously reported μ-hydroxo- μ-anilido complex trans$\left[\left(\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right)_{2}(\mu-\mathrm{OH})(\mu-\mathrm{NHPh})\right]$ instead of the $\beta-$ iminoenolate complex. This result shows that for the more acidic aniline the acid-base reaction $\rangle \operatorname{Pd}(\mu$ $\mathrm{OH})_{2} \mathrm{Pd}\left\langle+\mathrm{PhNH}_{2} \rightarrow\right\rangle \mathrm{Pd}(\mu-\mathrm{OH})(\mu-\mathrm{NHPh})\left\langle+\mathrm{H}_{2} \mathrm{O}\right.$ is faster than the addition reaction with the DMAD to give

Scheme 2.
the PhNH_{2}-DMAD adduct. The π-acceptor character of the PPh_{3} ligand should also enhance the basicity of the bis(hydroxo) complex. Nevertheless, the iminoenolate complex 18 could be prepared by reacting the bis(μ-hydroxo) complex with $\mathrm{MeO}_{2} \mathrm{CC}(\mathrm{NHPh}) \mathrm{CHCO}_{2}$ Me (Scheme 3).

The reaction of $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right\}_{2}\right]^{2-}$ with $\mathrm{MeO}_{2} \mathrm{CC}(\mathrm{NHPh}) \mathrm{CHCO}_{2} \mathrm{Me}$ was also studied and, as expected, complex 1 was the reaction product. The reaction of complex 1 with $\mathrm{HCl}(\mathrm{aq})$ in $1: 1$ molar ratio in acetone afforded (Scheme 3) the previously reported [15] di- μ-chloride palladium complex [$\left.\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right.$ $\left.\operatorname{Pd}(\mu-\mathrm{Cl})_{2} \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ and the enamine dimethyl N phenylamino fumarate, characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (see Experimental section). It has been reported that the addition of aniline to DMAD in benzene gives an 80:20 mixture of aminomaleate-aminofumarate

Table 6
Analytical data. yields and pliysical properties for complexes 10-19

Complex	Yield (\%)	M.p. ${ }^{\text {a }}$ $\left({ }^{\circ} \mathrm{C}\right)$	Analysis (\%) ${ }^{\text {b }}$			Selected IR bands ${ }^{\text {c }}$			$\Lambda_{M}{ }^{\prime \prime}$
			C	H	N	$v(C=0)$	$\begin{aligned} & v(\mathrm{CC})+v(\mathrm{CO}), \\ & v(\mathrm{CO})+v(\mathrm{CC}) \end{aligned}$	$\nu\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$	
10	77	215	$\begin{aligned} & 52.4 \\ & (52.6) \end{aligned}$	$\begin{aligned} & 3.6 \\ & (3.6) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & (2.0) \end{aligned}$	1740	1590, 1515	800	
11	80	201	$\begin{aligned} & 52.9 \\ & (53.2) \end{aligned}$	$\begin{aligned} & 3.7 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (1.9) \end{aligned}$	1735	1590, 1515	800	
12	79	197	$\begin{aligned} & 53.7 \\ & (53.9) \end{aligned}$	$\begin{aligned} & 4.0 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 1.9 \\ & (1.9) \end{aligned}$	1735	1590,1515	800	
13	75	204	$\begin{aligned} & 56.4 \\ & (56.7) \end{aligned}$	$\begin{aligned} & 3.6 \\ & \text { (3.7) } \end{aligned}$	$\begin{aligned} & 1.7 \\ & (1.8) \end{aligned}$	1730	1590, 1515	800	
14	72	184	$\begin{aligned} & 60.2 \\ & (60.3) \end{aligned}$	$\begin{aligned} & 4.9 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 2.2 \\ & (2.3) \end{aligned}$	1740	1595, 1515		
15	75	186	$\begin{aligned} & 60.8 \\ & (60.8) \end{aligned}$	$\begin{aligned} & 5.2 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (2.2) \end{aligned}$	1725	1595, 1510		
16	78	184	$\begin{aligned} & 61.6 \\ & (61.4) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 2.1 \\ & (2.2) \end{aligned}$	1725	1595, 1515		
17	79	178	$\begin{aligned} & 63.6 \\ & (64.0) \end{aligned}$	$\begin{aligned} & 5.0 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (2.0) \end{aligned}$	1730	1600, 1515		
18	82	232	$\begin{aligned} & 56.0 \\ & (56.1) \end{aligned}$	$\begin{aligned} & 3.4 \\ & \text { (3.5) } \end{aligned}$	$\begin{aligned} & 1.7 \\ & (1.8) \end{aligned}$	1738	1584, 1518	800	
19	80	204	$\begin{aligned} & 51.8 \\ & (51.8) \end{aligned}$	$\begin{aligned} & 5.2 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (3.1) \end{aligned}$	1740	$1650{ }^{\text {c }}, 1644^{\text {c }}$	798, 788	95

[^2]Table 7
NMR data (J in Hz) for complexes $\mathbf{1 0 - 1 9 (i n ~} \mathrm{CDCl}_{3}$)

Complex	${ }^{7} \mathrm{H} \mathrm{S}\left(\mathrm{SiMe}_{4}\right)$	${ }^{19} \mathrm{~F} \delta\left(\mathrm{CFCl}_{3}\right)$	${ }^{31} \mathrm{P} \boldsymbol{\delta (}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
10	$\begin{aligned} & 7.50\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{o}}, \mathrm{PPh}_{3}\right) \\ & 7.43\left(\mathrm{~m}, 3 \mathrm{H}_{\mathrm{p}}, \mathrm{PPh}_{3}\right) \\ & 7.37\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{m}}, \mathrm{PPh}_{3}\right) \\ & 4.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) \\ & 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NMe}, \mathrm{JPH}^{2} .9\right) \\ & 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \end{aligned}$	$\begin{aligned} & -118.4\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 21.2\right) \\ & -161.1\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}}^{19.8}\right) \\ & -162.6\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	27.8 (s)
11	$\begin{aligned} & 7.51\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{o}}, \mathrm{PPh}_{3}\right) \\ & 7.37\left(\mathrm{~m}, 3 \mathrm{H}_{\mathrm{p}}, \mathrm{PPh}_{3}\right) \\ & 7.27\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{m}}, \mathrm{PPh}_{3}\right) \\ & 4.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) \\ & 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) \\ & 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 0.79\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}, J_{\mathrm{HH}} 7.2\right) \end{aligned}$	$\begin{aligned} & -116.8\left(\mathrm{~d}, 2 \mathrm{~F}_{0}, J_{\mathrm{om}} 21.2\right) \\ & -161.0\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}}^{19.8)}\right. \\ & -162.6\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	27.8 (s)
12	$\begin{aligned} & 7.51\left(\mathrm{~m}, 6 \mathrm{H}_{0}, \mathrm{PPh}_{3}\right) \\ & 7.30\left(\mathrm{~m}, 3 \mathrm{H}_{\mathrm{p}}, \mathrm{PPh}_{3}\right) \\ & 7.37\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{m}}, \mathrm{PPh}_{3}\right) \\ & 4.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) \\ & 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) \\ & 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}^{2}\right) \\ & 1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) \\ & 0.39\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}_{\mathrm{HH}}\right. \end{aligned}$	$\begin{aligned} & -116.9\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 21.2\right) \\ & -161.2\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}} 19.8\right) \\ & -162.7\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	28.6 (s)
13	$\begin{aligned} & 7.44\left(\mathrm{~m}, 6 \mathrm{H}_{0}, \mathrm{PPh}_{3}\right) \\ & 7.32\left(\mathrm{~m}, 3 \mathrm{H}_{5}, \mathrm{PP},\right. \\ & 7.23\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{m}}, \mathrm{PPh}_{3}\right) \\ & 7.06\left(\mathrm{~m}, 2 \mathrm{H}_{0} \neq 1 \mathrm{H}_{\mathrm{p}}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}\right) \\ & 6.75\left(\mathrm{~d}, 2 \mathrm{H}_{\mathrm{m}}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}, J 6.9\right) \\ & 4.26\left(\mathrm{~s}, 1 \mathrm{H}_{1} \mathrm{CH}\right) \\ & 4.18\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{3}, J_{111} 3,3\right) \\ & 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \end{aligned}$	$\begin{aligned} & -117.9\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 21.2\right) \\ & -161.9\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}} 19.8\right) \\ & -163.8\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	28.0 (s)
14			29.8 (s)
15	$\begin{aligned} & 7.24\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right) \\ & 6.99\left(\mathrm{~d}, 2 \mathrm{H}_{0}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pd}, J 7.2\right) \\ & 6.55\left(\mathrm{~m}, 2 \mathrm{H}_{m}+1 \mathrm{H}_{\mathrm{p}}, \mathrm{C}_{6} \mathrm{H} \mathrm{H}_{5} \mathrm{Pd}\right) \\ & 4.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) \\ & 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) \\ & 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}^{2}\right) \\ & 0.76\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}, \mathrm{JHH}\right. \end{aligned}$		29.8 (s)
16			29.8 (s)

Table 7 (continued)

Complex	${ }^{1} \mathrm{H} \delta\left(\mathrm{SiMe}_{4}\right)$	${ }^{19} \mathrm{~F}$ 8(CFCl_{3})	${ }^{31} \mathrm{P} \delta\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
17	$\begin{aligned} & 7.22\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right) \\ & 6.99\left(\mathrm{~d}, 2 \mathrm{H}_{0}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Pd}, J 7.2\right) \\ & 7.06\left(\mathrm{~m}, 2 \mathrm{H}_{\mathrm{o}}+1 \mathrm{Hp}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \\ & 4.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) \\ & 3.96\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{2}, J_{\mathrm{HH}} 2.4\right) \\ & 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \end{aligned}$		30.0 (s)
18	$\begin{aligned} & 7.52\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{o}}, \mathrm{PPh}_{3}\right) \\ & 7.32\left(\mathrm{~m}, 6 \mathrm{H}_{\mathrm{m}}+3 \mathrm{H}_{\mathrm{p}}, \mathrm{PPh}_{3}\right) \\ & 6.75\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{5}\right) \\ & 4.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{2}\right. \\ & 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \end{aligned}$	$\begin{aligned} & -119.1\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 22.85\right) \\ & -162.5\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}}^{20.04)}\right. \\ & -164.1\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	28.7 (s)
19	$\begin{aligned} & 7.05\left(\mathrm{~m}, 2 \mathrm{H}_{\mathrm{n}}+1 \mathrm{Hp}, \mathrm{NPh}\right) \\ & 6.70\left(\mathrm{~d}, 2 \mathrm{H}_{\mathrm{o}}, \mathrm{~J}_{\mathrm{om}} 6.75\right) \\ & 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right) \\ & 3.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & -114.9\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 22.85\right) \\ & -116.9\left(\mathrm{~d}, 2 \mathrm{~F}_{\mathrm{o}}, J_{\mathrm{om}} 22.85\right) \\ & -162.7\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}} 19.75\right) \\ & -163.3\left(\mathrm{t}, 1 \mathrm{~F}_{\mathrm{p}}, J_{\mathrm{mp}}^{21.45)}\right. \\ & -164.9\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \\ & -165.6\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	

which gives on standing (23 h) the thermodynamically stable isomer (the aminofumarate) [27]. However, when complex 1 was treated with aqueous methanol at room
 temperature complex 19 was obtained (Scheme 3). The formation of complex 19 requires the hydroxy-de-alkoxylation of coordinated $\mathrm{N}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC}(\mathrm{OMe})$ $\mathrm{O}-$, i.e., an addition-elimination process on a $\mathrm{C}=\mathrm{C}$ double bond [28]. The suggested mechanism is presented in Scheme 4 where the anionic organic ligand in complex 1 is represented by its iminoenolate form.

Scheme 4.

Scheme 3.

Acknowledgements

Financial support from the DGICYT (project PB941157), Spain, is grateful acknowledged. V.R. thanks the Dirección Regional de Universidad e Investigación de la Región de Murcia for a research grant.

References and note

[1] R. Huisgen, K. Herbig, A. Siegl and H. Huber, Chem. Ber., 99 (1966) 2526.
[2] R.M. Carr, R.O.C. Norman and J.M. Vernon, J. Chem. Soc. Perkin Trans. I. (1980) 159.
[3] L.A. Villanueva, K.A. Abboud and J.M. Boncella, Organometallics, I/ (1992) 2963.
[4] K.A. Woerpel and R.G. Bergman, J. Am. Chem. Soc., 115 (1993) 7888.
[5] F. Balegroune, D. Grandjean, D. Lakkis and D. Matt, J. Chem. Soc. Chem. Commun., (1992) 1084.
[6] C. Arlen, M. Pfeffer, O. Bars and D. Grandjean, J. Chem. Soc. Dalton Trans., (1983) 1535.
[7] W. Tao, J. Silverberg. A.L. Rheingold and R.F. Heck, Organometallics, 8 (1989) 2550.
[8] J. Ruiz, T.M. Martínez, C. Vicente, G. García, G. López, P.A. Chaloner and P.B. Hitcheock, Organometallics, 12 (1993) 4321.
[9] J. Ruiz, N. Cutillas, J. Torregrosa, G. García, G. López, P.A. Chaloner, P.B. Hitchcock and R.M. Harrison, J. Chem. Soc. Dalton Trans., (1994) 2353.
[10] J. Ruiz, V. Rodríguez, G. Lopez, P.A. Chaloner and P.B. Hitcheock, in preparation.
[11] G. López, J. Ruiz, G. Garcia, C. Visente, J. Casabo, E. Molins and C. Miravillles, Inorg. Chem., 30 (1991), 2605.
[12] G. López, J. Ruiz, G. García, C. Vicente, J.M. Martí, J.A. Hermoso, A. Vegas and M. Martínez-Ripoll, J. Chem. Soc. Dalton Trans., (1992) 53.
[13] J. Ruiz, C. Vicente, J.M. Martí, N. Cutillas, G. García and G. López, J. Organomet. Chem., 460 (1993) 241.
[14] V.V. Grushin and H. Alper, Organometallics, 12 (1993) 1890.
[15] R. Usón, J. Formiés, F. Martínez and M. Tomás, J. Chem. Soc. Dalton Trans., (1980) 888.
[16] W. Geary, Coord. Chem. Rev., 7 (1971) 81.
[17] D.A. Long and D. Steel, Spectrochim. Acta, 19 (1963) 1955.
[18] G. López, J. Ruiz, C. Vicente, J.M. Martí, G. García, P.A. Chaloner, P.B. Hitchcock and R.M. Harrison, Organometallics, 11 (1992) 4090, and references cited therein.
[1S] E. Maslowsky, Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437.
[20] G. López, G. Sánchez, G. García, J. García, A. Sanmartín and M.D. Santana, Polyhedron, 10 (1991) 2821.
[21] G. López, J. Ruiz, G. Garcia, C. Vicente, J.M. Martí and V. Rodríguez, J. Organomet. Chem., 436 (1992) 121.
[22] In the fumarate configuration the hydrogen atom of the RNH group is involved in an intramolecular H-bridge -RN$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}(\mathrm{OMe})-[1]$.
[23] B. Kratochvíl, M. Novạková, J. Ondrálek, J. Novotny, V. Haber and B. Hájek, Acta Crystallogr. Sect. C:, 46 (1990) 1217.
[24] B. Kratochvíl, J. Ondráiek, J. Maixner, J. Maciiek and V. Haber, Coll. Czech. Chem. Commun., 56 (1991) 1900.
[25] B. Kratochvíl, M. Nováková, V. Haber, J. Ondráiek and B. Hajek, Acta Crystallogr. Sect. C:., 45 (1989) 403.
[26] J. Forniés, R. Navarro, M. Tomás and E.P. Urriolabeitia, Organometallics, 12 (1993) 940 .
[27] K. Herbig, R. Huisgen and H. Huber, Chem. Ber., 99 (1966) 2546.
[28] J. March, Advanced Orsanic Chemistry, Wiley, New York, 1985, p. 295.

[^0]: - Corresponding author.

[^1]: ${ }^{6}$ With decomposition. ${ }^{6}$ Calculated values in parentheses. ${ }^{6}$ In Nujol mulls (cm^{-1}) ${ }^{d} \mathbf{S ~ c m}^{2} \mathrm{~mol}^{-1}$ (in acetone)

[^2]: ${ }^{\mathrm{a}}$ With decomposition. ${ }^{\mathrm{b}}$ Calculated values in parentheses. ${ }^{\mathbf{c}}$ In Nujol mulls (cm^{-1}). ${ }^{\mathrm{d}} \mathrm{S} \mathrm{cm}^{2}$ mol ${ }^{-1}$ (in acetone). ${ }^{\mathbf{c}} \mathrm{v}(\mathrm{CO})$ of $\mathrm{C}(\mathrm{O}) \mathrm{O}-\mathrm{Pd}$.

